
ABSTRACT

Baroclinic  inertia-gravity (IG) waves form a persistent background of thermocline

depth and sea surface height (SSH) oscillations. Measured by the mtio of water particle

velocity to wave phase speed (alternatively, of the thermocline oscillation amplitude to the

mean depth of the thermocline),  the nonlinearity of IG waves may be rather high. Given a

continuous supply of energy from external sources, nonlinear wave-wave interactions

among IG waves would result in inertial cascades of energy, momentum and, possibly,

wave action. Based on a recentl  y developed theory of wave turbulence in scale-dependent

systems, these cascades are investigated and IG wave spectra wv derivcxi  for an arbitrary

degree of wave nonlinearity. Comparison with satellite-altirnetry-based spectra shows

good agreement. Finally, we discuss a possibility of inferring the internal Rossby radius

of deformation and other dynamical properties of the upper therrnocline  from the spectra of

SSH variations based on altimeter measurements.
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1, Introduction

Possible mechanisms of inertia-gravity (IG) wave generation include tidal forcing,

atmospheric pressure and wind stress fluctuations and various types of hydrodynamic

instability of vertical oceanic motions. Due to these, virtually permanent, sources of

energy, IG waves form a persistent background of ocean oscillations. However, with

respect to large-scale ocean circulation, open-ocean 10 waves (as opposed to coastal and

equatorial trapped waves) are usually considered to be of little importance. For example,

for numerical modeling, these waves, especially the fast barotropic  modes, represent

“computational noise” which has to be fidtered out, e.g., by employing a rigid-lid condition

at the surface. One factor that might increase importance of open-ocean IG waves is

nonlinear wave-wave interactions resulting in spectral fluxes of energy (as well as action

and momentum), hence in a broad spectrum of sea surface height (SSH) variations.

Oceanographic implications of these fluxes are discussed in Section 5 Finally, IG wave

turbulence offers a plausible explanation of the peculiar shape of SSH spectra known from

satellite altimeter observations - as discussed in section 4.

In the present work, based on a heuristic analysis of nonlinear resonant interactions

between IG waves, we derive spectral distributions of wave energy and surface height

variations. As shown in section 4, wave turbulence can develop only in baroclinic  modes

(we use the Boussinesq approximation) and is typical] y rather strong. Predicted spectra

are analyzed in section 4 where a comparison with satellite altimeter observations is

provided.

In the range of scales containing a Rossby radius of defom~ation,  IG waves are

characterized by a rather complicated dispersion law:

(1)(i)2 = f 2 
+C:mk2

9

where k = Ikl, f is the Coriolis  parameter (considered to be constant) and Co,m is the

phase velocity of Kelvin waves for vertical mode number m. A special case of m=()
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corresponds to barotmpic waves with Co,o  = gH where H is the (constant) ocean

depth. Short- and long-wave asymptotic of (1) am obtained, respeztivcly,  for

wavenumbers  much greater and much smaller than the. inverse Rossby radius

R– 1=  f—-

cO,nl
(2)

The presence of characteristic scale R in (1) makes the. problem of IG turbulence highly

non-trivial. In the short-wave approximation and for the lowest degree of nonlinearity, the

wave spectrum was derived [Falkovich  and Medvedev, 1992] by taking advantage of an

approximate scale-invariance of the collision integral. As shown in sections 3 and 4, these

assumptions xepresent  an oversimplification in the case of ocean waves. Therefore, we

employ an alternative approach callcxl  the multiwave  irlteraction theory. Developed

originally for deep-water gravity and capillary-gravity waves [Glazman,  1992-1995], it

does not require either scale-invariance or weak nonlinearity. However, the heuristic

nature of this theory makes it difficult to estimate the range of its validity. The experimental

data presented in section 4 seem to corroborate the theoretical predictions, although some

issues xemain unresolved. The most difficult one is the dependence of the effective number

of the msonantl  y interacting wave components on the appropriate external factors

controlling the degree of the wave nonlinearity. These are di scussed in sections 3 and 5.

For the ~ader  unfamiliar with the subject, a few relevant concepts on wave turbulence

are sketched in the next section. This presentation is x ather qualitative and is fccused on

physical ideas; a more rigorous and detailed account of this material is available in the

special literature [Zakharov  and L’vov, 1974; Zakharov, 1984;  Zakharov et al., 1992].

2, IG Wave Turbulence: An Overvie~.

We consider wave propagation only in the horizontal plane. The governing

equations for either barotropic  or baroclinic  waves in a shallow rotating fluid am
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du
—+jkxu=-gv~
dt

(3)~+v. (( H+&)u)=o
dt
cid~+u ~
dt & “

Here, U is the horizontal velocity vector averaged over the layer depth H, and k is the unit

vector along the Earth rotation axis. For simplicity, the Coriolis parameter is assumed to

be constant (f-plane approximation) and the gravity force g parallel to k. Therefore, our

consideration applies to mid and high latitudes and to spatial scales not exceeding a few

hundred kilometers. (In the rest of this paper, symbol k is employed for a different

purpose: it designates the wavenumber vector. We hope this will not cause any

confusion.)

For a baroclinic  case, the discussion will be conducted in terms of a 2-layer model,

hence we limit our consideration to the 1st baroclinic  mode. The g in (3) is then to be

viewed as the reduced gravity and H=HIH#(Hl +H2), where subscripts 1 and 2

correspond to the upper and lower layers, respective y, and H 1 +~(x,t) is the interface

between the two layers (the thermocline depth). We also assume H 1 <<Hz and HI to be

sufficiently large compared to the amplitude of ~(x,t) oscillations (e.g., [LeBlond and

Mysak,  1978; Gill, 1982]). Under these conditions, the free surface plays a passive role:

its undulations mimic oscillations of the thermocline boundary - although with a much

smaller amplitude.

We are interested in stationary wave solutions of (3) whose general form can be
i ‘“x+@ k)odZ(k)  with d?(k) representing the complex amplitude ofwritten as CJx,t) = Je (

the surface height (or thermocline  boundary) spatial variations. A similar expression can be

written for the velocity field. The presence of advective  terms in (3) leads to the energy

exchange among Fourier components. As a result, the wave field exhibits a highly

complicated (random) behavior. An appropriate description of such fields is provided by
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their statistical moments. The simplest such characteristic is the power spectrum F@) of

~(x,t)  variations

~c(kl)~(kl-k)dkl  = (dZk)@kl)) (4)

where the angle brackets denote ensemble averaging. This implies statistical spatial

homogeneity of field <(x,t). Subscript ~ becomes useful in section 3- when we introduce

energy spectra.

A statistically stationary wave field is observed if the external source, supplying

energy at a constant rate, works long enough to result in a steady spectral flux of wave

energy (and of other quantities conserved in the spectral cascade). In many problems of

wave turbulence the external input is considered to be confined to a limited band of

wavenumbers/fmquencies. In other words, outside the “genemtion  range” the spectral

fluxes are assumed to be purely inertial. Similarities with the 3- or 2-D eddy turbulence in

an incompressible fluid are obvious. For instance, the energy flux toward high

wavenumbers  is identified with the rate of energy dissipation (as in 3-d turbulence) and an

inverse spectral cascade is possible (as in 2-d turbulence) [Zakharov,  1984]. There are

also considerable diffenmces  between eddy and wave turbulence. In particular, wave

turbulence depends on the intrinsic relationship between wavenumber k and frequency co,

For eddy turbulence, dispersion relationships do not exist. Similar to the case of surface

gravity waves on deep water, (1) forbids 3-wave resonant interactions. The lowest-order

monance  occurs in wave tetrads
k1*k2i-k3*k4=0

(5)
6.)o*(I)2i W3 *@4=0

The formal, small-perturbation theory describes this type of processes in the framework of

the kinetic equation [Hasselmann,  1962; Zakharov  et al., 1992] which is usually written for

the spectral density of wave action, N(k,t) = F(k,t)/co,  where F(k,t) is the energy

spectrum. The relationship between F(k,t) and F~(k,t)  may be rather complicated. For

the inertial interval, the kinetic equation in the approximation of 4-wave interactions is
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iYV(k,t) / at = ~lT0123~8(~  + @l – (D2 – ~3)6(k + k] – k2, – k3)f~123dk1k2k3 (6)

in which fklz) = ~k~l~z~s(l / ~k + 1 / N1 – 1 / N2 – 1 / N3) and. the subscripts

designate arguments (such ask, k 1, etc.). The integral describes “collisions” which result

in the “birth” of two waves in place of two initial waves  Other types of collisions are

neglected. The scattering matrix Tk123 is a complicated function of wavenumber vectors

and frequencies. Its explicit expression for IG waves is given by Falkovich  and

Medvedev  [1992].

For our subsequent development it is important to note that the integral in (6)

represents the divergence (in the wavenumber space) of the spectral flux, P, of wave

action. To emphasize this poin~  the collision integral can be denoted by Vk o P(k, t)

[Phillips, 1977]. In a steady state, (6) takes a simple form

Vk o P(k) = O (7)

Its l-d version - obtained by integrating (7) as ?(... )kd(l  - gives the conservation of the
–7t

wave action flux in the spectral cascade, iY(k)  / W = O, or:

P(k) = po

A similar expression is obtained for the energy flux -by multiplying (7) by kw(k) and

integrating over azimuthal directions. The result is ~Q(k) / ~k = O or:

Q(k) = &

where Qo is the rate of energy dissipation. Equation (8) may have several solutions

(8)

(9)

[Zakharov, 1984] of which only one or two have physical significance. In particular, this

is the case for weakly nonlinear, sufficiently short IG waves [Falkovich  and Medvedev,

1992] for which (1) can be replaced by

‘=c”mk(l+:’kR’-2) (lo)

Two special solutions of(8) correspond to two types of spectral cascade: the inverse

cascade of wave action and the direct cascade of wave energy [e.g., Zakharov  et al., 1992;
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Falkovich  and Medvedev, 1992]. In what follows, wc assume that both cascades are local

in the wavenumber space. Implications and validity of this assumption with respect to the

direct energy cascade are discussed in sections 3 and 5.

So far, equations of type (8) yielded closed-form solutions only for scale-invariant

systems characterized by simple dispersion laws and simple expressions for the wave

energy. Scale invariance leads to drastic simplifications of the scattering matrix Tklzq

which allow one to seek solutions in the form N(k)  = k–r. For short (but not too short)

waves, an approximate solution corresponding to the inverse cascade is

~(k) _ #3k-lo/3 (11)

[Falkovich  and Medvedev, 1992]. This is a 2.-d spectrum of wave energy in which the

angular dependence is omitted (being assumed constant). Solution (11) is valid only for a

very narrow range of wavenumbers in which the reduced dispersion (10) is as weak as the

wave nonlinearity. In section 3, we provide a more general result for the inverse cascade.

When the nonlinearity is greater than that implied in the lowest-order theory, the

derivation of a kinetic equation (to account for higher-order terms in the perturbation series)

becomes impractical. However, as an introduction to the heuristic arguments of section 3,

it is useful to review some qualitative aspects of the formal perturbation theory. Suppose

the perturbation expansion is carried to an arbitrary order, The first nonlinear terms in

deterministic equations (for properly normalized and partially-time-averaged Fourier

amplitudes a(k,t) ~ e), are of order e2 and the subsequent terms are of order &3, &4, etc.,

where E is the measure of nonlinearity. For most wave problems, including IG waves, E =

u/c, where u is the characteristic velmity  of water particles and c is the wave phase speed

(for a given wavelength). Suppose further that, based on the deterministic equations, one

can derive a closed-form kinetic equation for statistical moments such as <a(k,t)a*(k l,t)>

whete the angle brackets denote ensemble averaging. This equation would have the form

~~w) + Vkpo) .+ vkpw + VkP(S)+...
at

= y(k)N(k,t) (12)
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where “partial” collision integrals V#n) account for n-wave interactions, If 3-wave

interactions ~ non-~  sonan~  term V&P(3) is eliminated by an appropriate canonical

transformation of the Hamiltonian.  This, however, is relevant only to weakly non-linear

2(n-1)
waves [Zakharov et al., 1992]. Apparently, the collision integrals in (12) scale as & .

Furthermore, ‘y(k)N(k,f)  reprments the external source (or sink, or both) where y(k)  is

an increment (decrement) of wave growth (attenuation). As mentioned earlier, in the

inertial range we have y(k)=o.  Weakly nonlinear waves (i.e., & << 1) permit neglecting

all partial collision integrals except for the first one. Indeed, if& = 0.1, the first collision

term in (12) is 102 times as large as the subsequent terms. However, this is not the case if

the nonlinearity is stronger. For a weak inequality&< 1, we would have to retain a series

of terms (up to n = 6 for the case of & = 0.5) in order to maintain the same accuracy as in

our example with c = 0.1. Of course, the numbers should not be taken too literally, for the

real situation is more complicated. However, the sug~estion  that multi wave interactions

with n=5, 6, etc., could become as important as the lower-order interactions appears

plausible. Finally when e+ 1, interactions of all orders up ton -> OCJ become of

comparable importance. This case of strong wave turbulence results in “saturated” spectra.

Larraz.a et al. [1989] showed that the Phillips spectrum F(k)-k4 for deep-water gravity

waves is just one example. A similar consideration is pnxented  in [Glazman,  1993] for

capillary waves, while a monotonous transition from weak to strong turbulence is studied

in [Glazrnan, 1992] for deep-water gravity waves. Theoretical and empirical relationships

between the effective number of resonantly interacting wave components and the external

parameters of the problem are suggested in [Cilazman, 1992, 1995

~, Heuristic theorv  of IG wave turbul enc~

Let us introduce the highest relevant number, v, of resonant wave-wave interactions

on the hypothesis that all interactions up to this order make compamble  contributions to the

spectral flux. Symbolically this can be written in the form
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aN(k;t)
at

+ ;vkP@) =  y(k)N(k,f) (13)
nzB

I For the inertial range in a steady state we have (8) with P = ~P(n)  c)r (9) with
n

Q(k) = i@)P(k)@) (14)
n

The “effective number” v of resonant wave components represents a measure of the wave

I nonlinearity, hence it is an increasing function of the “internal parameter” & and can be,

I hopefully, related to external factors, such as the energy input Qo.

I Considering the energy cascade, one can introduce the amount of energy, Ej,

I transfemd  by the local nonlinear interactions from a given narrow range of scales (the j-th

step in the cascade) to the next (the j+l step in the cascade):
kj+l

E j = ~F(k)kdk , where kj+l / kj = ~ (15)
kj

and r >1 is a constant. The characteristic time $ of the spectral transfer at step j, called

I the turnover time, should be taken as the largest among all in{iiviclual  turnover times

I associated with partial fluxes in (13). Indeed, it is the slowest process that controls the

total flux. By scaling the terms in (13), one ultimately finds
–1 - ~2(v–2)

‘j (16)

I where m is related to k by (1) and e - u / co,~ is explained in the preceding section.

I Expression (16), with v== and & = ak where a is the characteristic wave amplitude,

I was employed by Kitaigorodskii [1983] and Phillips [1985] tore-derive the Zakharov-

1 Filonenko  [1966] spectrum of weak turbulence in deep-water gravity waves. For an

I arbitrary value of v, (16) was suggested by Larraza et al. [1989] who showed that the

I Phillips [1958] spectrum is obtained as a result of an increasing interaction time when

I ak+l (thus causing the number of resonant wave-wave interactions to become infinite).

I Obviously, this cascade model of wave turbulence is rather similar to that of eddy

turbulence [e.g., Frisch et al, 1978].

In terms of (15) and (16), the spectral flux of wave energy is simply
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Q= Ej/tj (17)

Equating this to the input flux, Qo, we shall use Ej / tj = ~ in place of the kinetic

equation. Relating Ej and tj to k, 6-) and other relevant quantities one can estimate the

shape of the spectrum. his, however, pmumes  that the spectrum falls off sufficiently

fast as the wavenumber increases [Glazman,  1995]. Indeed, differentiating (15),

dEj / dkj = –(F(kj)kj  –– F(kj~)kj~2),  we find that

(18)

if, and only if, the spectrum falls-off not slower than k-s where the exponents satisfies

~2–s <<~ . Assuming for now that this condition holds, we shall check it a posteriori.

(In what follows, we will often omit the subscript j at k and a).)

The kinetic and potential energies of IG waves (per unit surface ma, per unit mass of

water) am

( )IU12
EK=—

2
,  EP==@~

2H ‘
(19)

(When averaging over the surface area, we assumed periodic boundary conditions.) For a

narrow frequency band between kj and kj+] , these energies are referenced to the

corresponding characteristic scales of the wave amplitude, aj, wave number, kj , etc.

The ratio of these energies increases with an increasing wavelength (e.g.,

Approximately,
EK ..- J=]+ 2
EP j m

Gill, 1982]).

(20)

Physically, the absence of energy equi-partition  is due to the fact that the orbits of water

particles are not strictly vertical (as would be the case for pure gmvity  waves). Their

inclination is the greater, the larger the relative importance of the Coriolis  force (e.g.,

[LeBlond  and Mysak, 1978; Fig. 17.1]). Since the total energy is E=EK+EP, it is useful to

express both components in terms of Ej:

‘Kw’+mb)
(21.1)



‘jEPj = — (kR)2
2 1+ (kR)2

(21.2)

11

In viewof(19), the characteristic particle velocity at scale k is given by

‘2(k)”EJ[1+ti7)

Based on(1) the characteristic phase speed is

[ )

1
C%)=c: l+—-

(kR)2

(22)

(23)

We can now express the interaction time, o, in terms of Ej, k MO and G (which is the

same as Co,m” appearing in (l), (2) and (10)):

‘j
-21,2[!(K+T2]- 1  ~co#(l+k )  cl 1

where i=kR

v–2

(24)

(25)

is the non-dimensional wavenumber.  It is also convenient tc) non-dimensionalim other

quantities:

&=&(R/Ci), ~j=Ej/C~Y ~(t) = F(k)/ (COR)2 ( 2 6 )

With Ij-l given by (24), equation (17) can be solved for ‘j. In the non-dimensional form

the result is

~j = f=#/(v-1) z
_l/’(v-l)(l _ ~ , ~2)- (V-’)i(v-l)

(27)

where we introduced

z=l+i2 (28)

An additional advantage of using the scaled variables is that this enables us to replace

sign “= “ in our relationships with “=” - implying that an appropriate constant of

proportionality (playing the de of the Kolmogorov constant) has been incorporated into

Qo of (26). In terms of z of (28), equation (1 8) takes the form

dfi .
F(k) = –2% (29)

Z=1+Z2

This yields the 2-d spectrum of the total wave energy:
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&“(v-l) ~(v-7/2)/(v-l)(z2 _ ~y-(2”-3)/(”-0tz2 + 4v _ 9)F(i) = ——
( v - l )

(30)

The surface height spectrum (i.e., the potential energy spectrum) is found based on (21 .2):
QII(V-1)

Fe(i) . —— (z - 1)(22+ 4V - 9)
2  ~)(2v--3)/(v-l)  ~5/2~ (31)

( v - 1 )  ( z  -

Since the angular dependence in our 2-d spectra is forgone, the corresponding l-d

spectrum is simply ~~(~)i, The plot of this spectrum is shown in Fig. 1 for several

values of v.

For weakly non-linear waves (when v = 4), an additional physically-meaningful

solution of(7) corresponds to the inverse cascade of wave action. This solution is obtained

by considering the action flux, i.e.

P= Nj/tj (32)
km+,

where Nj = J F(k)o)-lkdk.  In the same fashion as before, we arrive at:
km

(33)

The corresponding spectrum of surface height variations is
2F01J3 ~-2/3(z2@). ~– –1)+3(Z-1) (34)

Figure 2 provides comparison of the energy spectrum (33) with the spectrum(11)

derived based on a reduced wave dispersion (10). Again, we plot the results in terms of 1-

d spectra ~F(~). The figure gives an idea about the mnge in which (11) is in an

approximate agreement with our prediction: roughly this is kR <2. At higher

wavenumbers, when the wave dispersion becomes small compartxl  to the wave

nonlinearity, the Falkovich-Medvedev  theory does not apply,

The spectra in Fig. 1 contain interesting information. The first (actually, very

smooth) ’’break” in the spectrum (at kR = 0.8) tentatively separates the range of inertial

oscillations from that strongly affected by the gravity force. The second (also rather

smooth) “break” (at ~ = 3) occurs only if the wave nonlinearity is sufficiently high (v 2
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8). Thus, in the range 0.8< ~ <3 we have “fully” dispersive IG waves whose spectrum

is sensitive to the degree of the wave nonlinearity. In this range the spectrum fall-off may

be as fast as k-s - greater than in either of the asymptotic regimes of ~ -+ O and ~ --+ -.

This is the most non-trivial result of the present them-y. At ~ >3, wave dispersion has

only a weak effect on the spectrum (unless the nonlinearity is extremely high). Generally,

the greater the wave nonlinearity, the higher the wavenurnbers  at which wave dispersion

influences the spectrum. This is evidenced in a shift of the second spectral break toward

higher ~ as v increases.

Finally, Fig. 1 shows that the regime of non-dispersive (“acoustic”) waves observed

at ~>>1 is characterized by very flat spectra (approaching - k-l in terms of the 1-d

spectrum F(k)k). The nonlinearity of such waves (no matter how weak) is not

counteracted by competing factors, hence it should eventually lead to the formation of

“shock” waves [ Whitham, 1974] accompanied by a vigorous wave breaking. Indeed,

spectrum F(k) - k-l means that the (1-d) surface ~(x) is discontinuous in the mean-square

sense. Hence, at small scales, wave crests tend to become highly asymmetric, having a

steep front face and a gentle mar face. In section 5 we. discuss imp] ications  of this spectral

range for dynamical processes in the thermocline.

The small spectral slope at high wavenumbers has the following implications for the

validity of ( 18). The short-wave asymptotic of (30) and (31) are given by

(F(l) = i-s 1 -+4vi4 ) (35)

where s = 2 + ] /(V – 1), Apparently, the necessary condition for(18) to be valid is: s

>2. A strong inequality, s >>2, means that the spectral cascade is local. This is so

because the spectral width of a cascade step (measured by the rof(15)) would not have to

be very large to satisfy the requirement r2-S <<1 underlying (18). At high ~ - as

follows from (35) - the lc~ality  of wave-wave interactions comes into question because we

only have a week inequalitys >2. Therefore, in the high-wavenumbcr  range our simple
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theory needs to be complemented with a model of energy dissipation due to an intermittent

bmdcing  of steep wavelets. Such a model would describe a non-local energy transfer to

small scales, similar to that observed in deep-water gravity waves.

4, Analysis of Sea Surface Hei~ht Swec~

To some extent, the present work was inspired by satellite altimeter observations

showing that power spectra of the SSH field often exhibit features of scale-dependent

wave turbulence. However, the IG wave turbulence represents only one, not necessarily

dominan~  component of the total SSH variability. Filtering out fast SSH oscillations

(with periods comparable to that of baroclinic  IG waves), this component disappears

[Glazman  et al., 1995], In the wavenumber range of our interest, the spectra of slow

motions are dominated by the 2-d eddy turbulence. (At lower wavcmumbers,  we also

observe a contribution of baroclinic  Rossby waves [Glazman et al., 1995]).

One-dimensional spectra of SSH spatial variations am presently well documented

(e.g., [Fu, 1983], [De Mey and Menard, 1989], [IA Traon et al, 1990; 1994]), and 2-d

spectra and spatio-temporal  autocorrelation  functions are beginning to be reported

[Glazman,  et al., 1995]. All such spectra are based on SSH data from which time-

invariant spatial trends have been removed. Typical spectra of these “de-trended” SSH

variations along satellite passes are presented in Fig.3, reproduced from .[@_Tricm  et al.,-... — ——.. ._. _ -_ ._

1994]. The spectra are calculated separately for ascending and descending passes and then

averaged together. Therefore, they utilize practically instantaneous measurements because

it takes only about 3 min for a satellite to cover a 1000 km groundtrack segment. At

wavenumbers above the fh-st spectral break, these spectra appear to be in good agreement

with the theo~tical  prediction (31) based on the direct energy cascade. The spectrum (34)

based on the inverse cascade displays agreement with the observations at wavenumbers

roughly below ~ = z -as shown by Fig. 2 curve (b).
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An explanation of the observed trends is suggested based on the following view. As

is well known, most of the mesoscale  eddy energy is contained at wavenumbers near 0.02

rad/km  (i.e., at scales near 300 km). It is also likely that most of the baroclinic  IG wave

energy is generated in this particular range: hydrodynamic instability of a 2-d vertical flow

with respect to baroclinic  gravity modes could provide the energy source. Assuming the

energy input to be at maximum at wavenumbers near 0.02 rad/km,  one anticipates (by

analogy with the wind-generated surface gravity waves on deep-water) the existence of two

spectral cascades of IG wave turbulence: the direct cascade in the higher-wavenumber

range and the inverse cascade at lower wavenumbers - away from the generation range.

The characteristic period of baroclinic  IG waves, 2Z / w, is estimated based on (1)

where CO,l = 3 m/s (a typical baroclinic  Kelvin wave speed for the first mode in a mid-

latitude region). The corresponding Rossby radius is about 30 km. It is easy to check

that, for the wavelength range 10 to 300 km, the wave period varies between 1 and 15

hours. Recalling (25) one can also see that the position of the spectral breaks in Fig. 3 is in

reasonable agreement with those in Figs. 1 and 2 (curve b).

It is well known that the 1-d spectra based on along-track measurements exhibit a

rather gentle spectral fall-off (k-q and slower) only in the low-energy regions (e.g., [Fu,

1983], [Le Traon et al., 1990]). Near the Gulf Stream, for example, the spectra fall off at

least as fast as k~. An explanation of this behavior is simple: in the regions of high meso-

scale eddy activity, the SSH variations are dominated by the vertical rather than gravity-

wave component. The kinetic energy spectm of 2-d eddy turbulence are given by k-q or k-

5D, corresponding to the enstrophy or energy cascades, respective] y [Kraichnan, 1967],

In terms of l-d spectra of SSH variations, these  translate into k-s or k-l lfl. Such high

rates of spectral decay are consistently observed in high-energy regions [Fu, 1983], [Le

Traon, et al., 1990], [Glazman, et al., 1995].

Apparently, the strong dependence of the (dimensional) wave spectrum on the

internal Rossby radius of deformation points to a possibility of inferring this oceanographic
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parameter from spectra of SSH variations along altimeter groundtracks.  Moreover, the

spectral “breaks” seen in Fig. 3 (actually, the entire shape of the spectrum) allow one to

estimate the de- of the nonlinearity of baroclinic  waves - an important indication of

dynamical activity in the thermocline.

Comparing different curves in Fig. 1 to the spectra in Fig. 3 and to spectra reported

for various regions by Le Traon et al, [1990], one concludes that the degree of the wave

nonlinearity (in terms of parameter v) varies from region to region, but is typically quite

high. This should cause no surprise. Really, due to the smallness of the thermocline

depth, the relative wave amplitude (or, equivalently, the ratio of the particle velocity to the

phase speed) can be rather large. The physical cause of large-amplitude internal waves is

the extremely small difference in the densities of the two layers. Ilis allows large

oscillations to be produced by low-energy forcing. The barotropic waves whose

characteristic phase speed is about 200 mh could hardly ever attain a similar degree of

nonlinearity.

5, Discus sion and conclusion~

The present analysis addressed only the most basic aspects of the problem. By

limiting our consideration to a single (first) baroclinic  mode we excluded possible exchange

of energy with other modes. This exchange may be in iportant,  at least within a certain

subrange of wavenumbers/frequencies. Further theoretical developments should also

include a more elaborate treatment of the Coriolis  force (which becomes impommt  for the

regions closer to the equator). Furthermore, since the spectml distribution of energy input

to IG wave turbulence is not yet known, our consideration has been limited to purely

inertial cascades - when all the input is concentrated at unspecified low or high

wavenumbers. In principle, one can generalize the theory to account for a continuos

spectral distribution of the energy input. Such a generalization would also Educe  the

uncertainty in the effective value of v (the number of the resonantly interacting wave
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components) [Glazman, 1992]. However, wc do not yet have enough knowledge about

relevant physical processes to adchess  such issues.

Experimental comparisons indicate that the IG wave spectra at higher wavenumbers

are determined by the direct energy flux. This has interesting implications. Specifically,

spectral transfer of energy from larger scales should xwsult  in energy dissipation at high

wavenumbers. This dissipation can occur through a variety of mechanisms of which the

internal wave breaking and mixing are most likely. Wave breaking produces small scale

turbulence. For wind-generated surface gravity waves, the probability and other statistics

of the wave breaking have been related to the spectrum shape [Snyder and Kennedy,

1983], [Glazman and Weichman, 1989]. Therefore, we anticipate that further studies of

IG wave turbulence may lead to quantitative characterization of intermittent events of

baroclinic  wave breaking. Such studies might improve. our understanding of vertical fluxes

and ocean mixing processes.

The theory indicates that the thermocline  oscillations contain important oceanographic

information which can be derived from observed SS}1 spectra. q’he Rossby radius of

deformation is one such item. Another, presently less understood, information item is the

degree of the wave nonlinearity. This is inferred by analyzing the spectral slope in

different wavenumber subranges: according to Fig. 1, a sharp change in the spectral slope

points to a high degree of nonlinearity, whereas a neal -constant slope (the case of v = 4 in

Fig. 1) corresponds to the lowest de~e of nonlinearity.
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Figure Captions.

Figure 1. The 1-d wavenumber spectrum ~((~)~ of SSH spatial variations predicted

based on (31). The degrt-e of the wave nonlinearity, in terms of the effective number v of

the resonantly interacting Fourier components, is indicated at each curve.

Figure 2. Solid curves: 1-d spectra of wave energy (a) and of interface spatial variations

(b) due to weakly-nonlinear IG wave turbulence (v =4) for the inverse cascade of wave

action. The spectra are based on (34) and (33), respectively. Dashed curve: asymptotic

solution (11 ) [Falkovich  and Medvedev, 1992] plotted as a 1-d spectrum k-7fi.
“)’>,

Figure 3. 1-d spectra of spatial SSH variations along altimeter groundtracks ~Traon et

al., 1994] based on Topex/Poseidon  data for mid-latit  ude regions. (Permission to

reproduce this figure will be requested from the authors upon successful review of the

manuscript.) / ,1(. “!’
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